Automatic ordinals and linear orders

Philipp Schlicht, University of Bonn with Frank Stephan

Winter school in set theory Hejnice, 3 February 2011

Let us fix a finite alphabet Σ . A finite automaton A consists of

- a finite set S of states,
- an initial state,
- a transition function $\Delta: S \times \Sigma \rightarrow S$, and
- a subset of S of accepting states.

An input word (string) is read from beginning to end and is accepted or rejected according to the end state.

Automatic structures

An automaton A recognizes a set of words if A accepts exactly the words in the set.

Definition

A (word) automatic structure $(M, R_0, ..., R_n)$ is (isomorphic to) a structure with domain a set of finite words in a finite alphabet. The domain and the relations of the structure are recognized by finite automata.

Definition

An ordinal γ is automatic if $(\gamma, <)$ is automatic.

Examples

Examples:

- $(\omega, +, <)$
- $(\mathbb{Q}, <)$
- finitely generated abelian groups

Non-examples:

- $(\omega^{\omega}, <)$ (Delhommé)
- (ω, \times)
- the random graph (Delhommé)

・ロト (四) (日) (日) (日) (日) (日)

Motivation

Why study automatic structures and computable structures?

They are often simpler than arbitrary structures (in a given class):

- $\bullet\,$ the $\exists^\infty\textsc{-theory}$ of any automatic structure is decidable
- automatic linear orders have finite Cantor-Bendixson rank
- the isomorphism problem for automatic ordinals is decidable.

Counterexample:

• there are automatic wellfounded relations of arbitrary large height below ω_1^{CK} (Khoussainov-Minnes).

Motivation

Do structures recognized by automata with infinite running time α have similar properties?

The automatic ordinals are exactly those below ω^{ω} (Delhommé). Which ordinals are α -automatic?

Results

Proposition (Stephan-S.)

Suppose $\alpha = \omega \cdot \beta = \omega^{\gamma}$. Then $\omega^{\beta \cdot \omega}$ is the supremum of the α -automatic ordinals.

Proposition (Stephan-S.)

Suppose $\alpha = \omega \cdot \beta = \omega^{\gamma}$. Then $\beta \cdot \omega$ is the supremum of ranks of α -automatic linear orders.

Hence the power of $\alpha\text{-}{\rm automata}$ increases with every power of $\omega.$

Let us fix a limit ordinal α and an extra symbol \diamond . A *finite* α *-word* is a word of length α with the letter \diamond almost everywhere.

An α -automaton is a finite automaton with a limit transition function which maps the set of states appearing cofinally often before a limit to the state at the limit (similar automata have been studied by Büchi, Choueka, Wojciechowski).

A word is accepted or rejected according to the state at time α .

α -automatic structures

Definition

A structure is (finite word) α -automatic if it is (isomorphic to) a structure whose domain consist of finite α -words and the domain and relations are recognized by α -automata.

Properties:

The \exists^{∞} -theory of any α -automatic structure is decidable and every ω^{γ} -automatic presentation restricted to ω^{ω} represents an elementary substructure.

The class of α -automatic structures is closed under finite products.

Every $(\alpha \cdot n)$ -automatic structure is α -automatic.

α -automatic ordinals

Example

Let $(n_0, ..., n_k) <^* (m_0, ..., m_l)$ if

• k = l and $n_i < m_i$ for $i \le n$ least with $n_i \ne m_i$, or • k < l.

This is a wellorder on $\omega^{<\omega}$ of order type ω^{ω} . Let us represent $(n_0, ..., n_k)$ by the (finite) ω^2 -word $0^{n_0} 1 \diamond^{\omega} 0^{n_1} 1 \diamond^{\omega} ... 0^{n_k} 1 \diamond^{\omega^2}$.

Hence ω^{ω} is ω^2 -automatic. Similarly ω^{β} is α -automatic, where $\alpha = \omega \cdot \beta$.

Automatic product

Suppose C, D are sets of ordinals. Let tp(C) denote the order type of C. Let tp(C, D) denote the isomorphism type of $(C \cup D, C, D, <)$.

Definition

 $\alpha *_{aut} \beta$ is the supremum of the ordinals γ such that there is $(C_{\delta} : \delta < \epsilon)$ with $\gamma = \bigcup_{\delta < \epsilon} C_{\delta}$ and

- $\forall \delta < \epsilon \ tp(C_{\delta}) \leq \alpha$,
- there are only finitely many $tp(C_{\delta}, C_{\eta})$ for $\delta, \eta < \epsilon$, and
- let for $\mu < \alpha$ $Tr_{\mu} = \{C_{\delta}(\mu) : \delta < \epsilon\}$ (the trace of μ). Then $\forall \mu < \alpha \ tp(Tr_{\mu}) \leq \beta$.

Commutative product

Definition (Hessenberg)

Suppose $\alpha = \sum_{i < m} \omega^{\alpha_i}$ and $\beta = \sum_{j < n} \omega^{\beta_j}$ are in Cantor normal form. The commutative sum $\alpha \oplus \beta$ is the sum of all ω^{α_i} and ω^{β_j} arranged in decreasing order. The commutative product $\alpha \otimes \beta$ is the sum of all $\omega^{\alpha_i \oplus \beta_j}$ arranged in decreasing order.

Commutative sum and product are strictly monotone in both coordinates.

Automatic product

Lemma

 $\alpha *_{aut} \beta = \alpha \otimes \beta$ for all α, β .

Proof sketch:

Suppose $\alpha = \omega^{\omega^{\alpha'}}$ and $\beta = \omega^{\omega^{\beta'}}$.

Case $\alpha \otimes \beta = \alpha \cdot \beta$: Let C_{γ} be sets of ordinals of order type α with

• sup
$$C_{\gamma} < \min C_{\delta}$$
 for all $\gamma < \delta < \beta$.

Case $\alpha \otimes \beta = \beta \cdot \alpha$: Same with

• $C_{\gamma}(\mu) < C_{\delta}(\nu)$ for all $\mu < \nu < \alpha$ and $\gamma, \delta < \beta$ and

• $C_{\gamma}(\mu) < C_{\delta}(\mu)$ for all $\mu < \alpha$ and $\gamma < \delta < \beta$.

Automatic product

Suppose $(C_{\delta} : \delta < \epsilon)$ as in definition of $\alpha *_{aut} \beta$ and $\alpha = \omega^{\bar{\alpha}}$ and $\beta = \omega^{\bar{\beta}}$.

Assume $tp(C_{\gamma}) = tp(C_{\delta})$ for all $\gamma < \delta < \epsilon$ and

• sup
$$C_{\gamma} = \sup C_{\delta}$$
 (case 1) or

• sup
$$C_{\gamma} < \min C_{\delta}$$
 (case 2) for all $\gamma < \delta < \epsilon$,

otherwise split.

Case 1: Every proper initial segment is bounded by $\alpha' *_{aut} \beta = \alpha' \otimes \beta < \alpha \otimes \beta$ for some $\alpha' < \alpha = tp(C_{\gamma})$.

Case 2: ... bounded by $\alpha *_{aut} \beta' = \alpha \otimes \beta'$ for some $\beta' < \beta$. \Box

α -automatic ordinals

Proposition

Suppose $\alpha = \omega \cdot \beta = \omega^{\gamma}$. Then $\omega^{\beta \cdot \omega}$ is the supremum of the α -automatic ordinals.

Proof sketch:

Suppose there is an α -automatic structure of order type at least $\omega^{\beta \cdot \omega}$. Let $u \downarrow$ denote the set of predecessors of u. We pick an element u_n with $tp(u_n \downarrow) = \omega^{\beta \cdot n}$ for each $n \ge 1$. Write

$$u_n \downarrow = X_{u_n} \sqcup \bigsqcup_{|v|=|u_n|} Y_v^{u_n}$$

where $X_{u_n} = \{x : |x| < |u_n| \& x < u_n\}$ and $Y_v^u = \{vw : vw < u\}$.

α -automatic ordinals

$$X_{u_n} = \{ x : |x| < |u_n| \& x < u_n \}$$

$$Y_v^u = \{ vw : vw < u \}$$

Then $u_n \downarrow -X_{u_n}$ is an automatic product of the sets $Y_v^{u_n}$.

- $tp(X_{u_n}) < \omega^{\beta}$ since X_{u_n} is $|u_n|$ -automatic and $|u_n| < \alpha$
- $tp(Tr_{\delta}) < \omega^{\beta}$ since Tr_{δ} is α' -automatic for some $\alpha' < \alpha$.

Hence there are words v_n with $tp(Y_{v_n}^{u_n}) = \omega^{\beta \cdot n}$ for each $n \ge 1$. But the number of types is bounded by the number of states. Contradiction. \Box

α -automatic linear orders

Definition

A linear order C is an automatic product of linear orders A and B if there are sequences $(C_{\gamma} : \gamma < \epsilon)$ of subsets of C and $(f_{\gamma} : \alpha \rightarrow C_{\gamma} : \gamma < \epsilon)$ of onto functions with

- $C = \bigcup_{\gamma < \epsilon} C_{\gamma}$
- $C_{\gamma} \hookrightarrow A$ for all $\gamma < \epsilon$
- for each n, there are only finitely many $tp(f_{\gamma_0}, ..., f_{\gamma_n})$ for $\gamma_i < \epsilon$.
- let for $\mu < \alpha \ g_{\mu}(\gamma) = f_{\gamma}(\mu)$. Then $\forall \mu < \alpha \ ran(g_{\mu}) \hookrightarrow B$.

α -automatic linear orders

Definition

Suppose (C, \leq) is a linear order. Let $rk(\leq) = 0$ if the domain is finite. Let $rk(\leq) \leq \alpha$ if it is a finite sum of \mathbb{Z} -sums of linear orders of rank $< \alpha$.

A linear order *L* is *scattered* if $(\mathbb{Q}, <) \leftrightarrow L$. Every scattered linear order has a rank.

α -automatic linear orders

Lemma

Suppose a scattered linear order C is an automatic product of A and B. Then $rk(C) \leq rk(A) \oplus rk(B)$.

Proposition

Suppose $\alpha = \omega \cdot \beta = \omega^{\gamma}$. Then $\beta \cdot \omega$ is the supremum of ranks of α -automatic linear orders.

Questions

- What is the supremum of the heights of $\alpha\text{-}\mathsf{automatic}$ wellfounded partial orders?
- Can every countable infinite word α -automatic structure be represented by a finite word α -automatic structure?
- Is the random graph α -automatic?
- Is the isomorphism problem for automatic linear orders decidable?